
 0-7695-1524-X/02 $17.00 (c) 2002 IEEE 1

An Overview of the BlueGene/L Supercomputer

The BlueGene/L Team

IBM and Lawrence Livermore National Laboratory1

NR Adiga, G Almasi, GS Almasi, Y Aridor, R Barik, D Beece, R Bellofatto, G Bhanot, R
Bickford, M Blumrich, AA Bright, J Brunheroto, C Caşcaval, J Castaños, W Chan, L
Ceze, P Coteus, S Chatterjee, D Chen, G Chiu, TM Cipolla, P Crumley, KM Desai, A
Deutsch, T Domany, MB Dombrowa, W Donath, M Eleftheriou, C Erway, J Esch, B
Fitch, J Gagliano, A Gara, R Garg, R Germain, ME Giampapa, B Gopalsamy, J Gunnels,
M Gupta, F Gustavson, S Hall, RA Haring, D Heidel, P Heidelberger, LM Herger, D
Hoenicke, RD Jackson, T Jamal-Eddine, GV Kopcsay, E Krevat, MP Kurhekar, AP
Lanzetta, D Lieber, LK Liu, M Lu, M Mendell, A Misra, Y Moatti, L Mok, JE Moreira,
BJ Nathanson, M Newton, M Ohmacht, A Oliner, V Pandit, RB Pudota, R Rand, R
Regan, B Rubin, A Ruehli, S Rus, RK Sahoo, A Sanomiya, E Schenfeld, M Sharma, E
Shmueli, S Singh, P Song, V Srinivasan, BD Steinmacher-Burow, K Strauss, C Surovic,
R Swetz, T Takken, RB Tremaine, M Tsao, AR Umamaheshwaran, P Verma, P Vranas,
TJC Ward, M Wazlowski

 IBM Research

W Barrett, C Engel, B Drehmel, B Hilgart, D Hill, F Kasemkhani, D Krolak, CT Li, T
Liebsch, J Marcella, A Muff, A Okomo, M Rouse, A Schram, M Tubbs, G Ulsh, C Wait,
J Wittrup

IBM Rochester

M Bae (IBM Server Group), K Dockser (IBM Microelectronics)

L Kissel, MK Seager, JS Vetter, K Yates
Lawrence Livermore National Laboratory

Abstract: This paper gives an overview of the BlueGene/L Supercomputer. This is a
jointly funded research partnership between IBM and the Lawrence Livermore National
Laboratory as part of the United States Department of Energy ASCI Advanced
Architecture Research Program. Application performance and scaling studies have
recently been initiated with partners at a number of academic and government
institutions, including the San Diego Supercomputer Center and the California Institute of
Technology. This massively parallel system of 65,536 nodes is based on a new
architecture that exploits system-on-a-chip technology to deliver target peak processing
power of 360 teraFLOPS (trillion floating-point operations per second). The machine is
scheduled to be operational in the 2004-2005 time frame, at price/performance and power
consumption/performance targets unobtainable with conventional architectures.

1 Part of this work was performed under the auspices of the U.S. Department of Energy by the University of
California at Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

vetter
Published in Proc. SC 2002. Baltimore, MD. November 2002.

 2

1. Introduction and Background

IBM has previously announced a multi-year initiative to build a petaflop scale machine
for calculations in the area of life sciences. The BlueGene/L machine is a first step in this
program, and is based on a different and more generalized architecture than IBM
described in its announcement of the BlueGene program in December of 1999. In
particular BlueGene/L is based on an embedded PowerPC processor supporting a large
memory space, with standard compilers and message passing environment, albeit with
significant additions and modifications to the standard PowerPC system.

Significant progress has been made in recent years mapping numerous compute-intensive
applications, many of them grand challenges, to parallel architectures. This has been done
to great success largely out of necessity, as it has become clear that currently the only
way to achieve teraFLOPS-scale computing is to garner the multiplicative benefits
offered by a massively parallel machine. To scale to the next level of parallelism, in
which tens of thousands of processors are utilized, the traditional approach of clustering
large, fast SMPs will be increasingly limited by power consumption and footprint
constraints. For example, to house supercomputers in the 2004 time frame, both the Los
Alamos National Laboratory and the Lawrence Livermore National Laboratory have
begun constructing buildings with approximately 10x more power and cooling capacity
and 2-4x more floor space than existing facilities. In addition, due to the growing gap
between the processor cycle times and memory access times, the fastest available
processors will typically deliver a continuously decreasing fraction of their peak
performance, despite ever more sophisticated memory hierarchies.

The approach taken in BlueGene/L (BG/L) is substantially different. The system is built
out of a very large number of nodes, each of which has a relatively modest clock rate.
Those nodes present both low power consumption and low cost. The design point of
BG/L utilizes IBM PowerPC embedded CMOS processors, embedded DRAM, and
system-on-a-chip techniques that allow for integration of all system functions including
compute processor, communications processor, 3 cache levels, and multiple high speed
interconnection networks with sophisticated routing onto a single ASIC. Because of a
relatively modest processor cycle time, the memory is close, in terms of cycles, to the
processor. This is also advantageous for power consumption, and enables construction of
denser packages in which 1024 compute nodes can be placed within a single rack.
Integration of the inter-node communications network functions onto the same ASIC as
the processors reduces cost, since the need for a separate, high-speed switch is
eliminated. The current design goals of BG/L aim for a scalable supercomputer having
up to 65,536 compute nodes and target peak performance of 360 teraFLOPS with
extremely cost effective characteristics and low power (~1 MW), cooling (~300 tons) and
floor space (<2,500 sq ft) requirements. This peak performance metric is only applicable
for applications that can utilize both processors on a node for compute tasks. We
anticipate that there will be a large class of problems that will fully utilize one of the two
processors in a node with messaging protocol tasks and will therefore not be able to
utilize the second processor for computations. For such applications, the target peak
performance is 180 teraFLOPS.

 3

The BG/L design philosophy has been influenced by other successful massively parallel
machines, including QCDSP at Columbia University. In that machine, thousands of
processors are connected to form a multidimensional torus with nearest neighbor
connections and simple global functions. Columbia University continues to evolve this
architecture with their next generation QCDOC machine [QCDOC], which is being
developed in cooperation with IBM research. QCDOC will also use a PowerPC
processing core in an earlier technology, a simpler floating point unit, and a simpler
nearest neighbor network.

2. System Overview

BlueGene/L is a scalable system in which the maximum number of compute nodes
assigned to a single parallel job is 216 = 65,536. BlueGene/L is configured as a 64 x 32 x
32 three-dimensional torus of compute nodes. Each node consists of a single ASIC and
memory. Each node can support up to 2 GB of local memory; our current plan calls for 9
SDRAM-DDR memory chips with 256 MB of memory per node. The ASIC that powers
the nodes is based on IBM’s system-on-a-chip technology and incorporates all of the
functionality needed by BG/L. The nodes themselves are physically small, with an
expected 11.1-mm square die size, allowing for a very high density of processing. The
ASIC uses IBM CMOS CU-11 0.13 micron technology and is designed to operate at a
target speed of 700 MHz, although the actual clock rate used in BG/L will not be known
until chips are available in quantity.

The current design for BG/L system packaging is shown in Figure 1. (Note that this is
different from a preliminary design shown in [ISSCC02] as are certain bandwidth figures
that have been updated to reflect a change in the underlying signaling technology.) The
design calls for 2 nodes per compute card, 16 compute cards per node board, 16 node
boards per 512-node midplane of approximate size 17”x 24”x 34,” and two midplanes in
a 1024-node rack. Each processor can perform 4 floating point operations per cycle (in
the form of two 64-bit floating point multiply-add’s per cycle); at the target frequency
this amounts to approximately 1.4 teraFLOPS peak performance for a single midplane of
BG/L nodes, if we count only a single processor per node. Each node contains a second
processor, identical to the first although not included in the 1.4 teraFLOPS performance
number, intended primarily for handling message passing operations. In addition, the
system provides for a flexible number of additional dual-processor I/O nodes, up to a
maximum of one I/O node for every eight compute nodes. For the machine with 65,536
compute nodes, we expect to have a ratio one I/O node for every 64 compute nodes. I/O
nodes use the same ASIC as the compute nodes, have expanded external memory and
gigabit Ethernet connections. Each compute node executes a lightweight kernel. The
compute node kernel handles basic communication tasks and all the functions necessary
for high performance scientific code. For compiling, diagnostics, and analysis, a host
computer is required. An I/O node handles communication between a compute node and
other systems, including the host and file servers. The choice of host will depend on the
class of applications and their bandwidth and performance requirements.

 4

The nodes are interconnected through five networks: a 3D torus network for point-to-
point messaging between compute nodes, a global combining/broadcast tree for
collective operations such as MPI_Allreduce over the entire application, a global barrier
and interrupt network, a Gigabit Ethernet to JTAG network for machine control, and
another Gigabit Ethernet network for connection to other systems, such as hosts and file
systems. For cost and overall system efficiency, compute nodes are not hooked directly
up to the Gigabit Ethernet, but rather use the global tree for communicating with their I/O
nodes, while the I/O nodes use the Gigabit Ethernet to communicate to other systems.

In addition to the compute ASIC, there is a “link” ASIC. When crossing a midplane
boundary, BG/L’s torus, global combining tree and global interrupt signals pass through
the BG/L link ASIC. This ASIC serves two functions. First, it redrives signals over the
cables between BG/L midplanes, improving the high-speed signal shape and amplitude in
the middle of a long, lossy trace-cable-trace connection between nodes on different
midplanes. Second, the link ASIC can redirect signals between its different ports. This
redirection function enables BG/L to be partitioned into multiple, logically separate
systems in which there is no traffic interference between systems. This capability also
enables additional midplanes to be cabled as spares to the system and used, as needed,
upon failures. Each of the partitions formed through this manner has its own torus, tree
and barrier networks which are isolated from all traffic from all other partitions on these
networks.

System fault tolerance is a critical aspect the BlueGene/L machine. BlueGene/L will have
many layers of fault tolerance that are expected to allow for good availability despite the
large number of system nodes. In addition, the BlueGene/L platform will be used to
investigate many avenues in autonomic computing.

3. System Packaging

The BG/L system is a cost/performance design, focused on fault tolerance, high density,
low power and thus achieving low acquisition and runtime cost. The hardware cost is
dominated by the ASIC and DRAM devices themselves. To manage circuit card costs,
the interconnect was developed from the outside in. After identifying a system package
based on standard 19” racks modified for high power transverse air cooling, we arranged
these racks to minimize the longest cable as this is the bandwidth limiter in rack to rack
communication. The differential cables are 26 AWG , and the longest length is 8 meters.
Thicker conductors gave negligible improvement in attenuation for the added bulk.
Rather, focus was on mechanical footprint, robustness and avoidance of large impedance
discontinuities. We chose connector pin assignments for cables and circuit cards to
minimize card wiring layers and avoid high priced, higher risk fine geometries, while
also minimizing the worst case wire length. Circuit cards and ASIC packages have just 4
internal wiring layers except the 6 wiring layer midplane. Minimum card line width and
space is ~110µm long traces are oversized to ~200µm width while maintaining 50Ω
impedance to reduce DC and skin effect losses. ASIC floorplanning and I/O assignments

 5

were iterated until a minimum layer ASIC package could be built. To avoid large
numbers of capacitors for proper image current return at connectors, and to reduce
switching noise, we used all differential signaling for the 1.4 Gb/s torus and tree links,
and complete ground referencing on all nets. To reduce connector failure all DRAMs
and DC-DC power supplies are directly soldered, cable connectors have screwed
lockdowns, and all connectors are very reliable pin and socket multi-contact interfaces.
Each 22 differential pair cable contains a spare pair which can be swapped in by the link
ASIC, in much the same way that the 9 chip DRAM system has a spare 4 bits (nibble)
that can be spared in if required. The DRAM additionally supports through ECC (error
correcting code) the ability to run uninterrupted without error when losing a consecutive
byte of the data bus as well as the usual single bit correct/ double bit detect functionality
provided by ECC. Cables are removed only to service the link cards.

The BlueGene/L power and cooling network is an example of a cost/performance fault
tolerant design. The system is air cooled, designed to operate in standard raised floor
machine rooms, and assumes standard fault tolerant 220V rack feed and failover air
chillers. Racks are designed to be on a 3-foot pitch in a row and a 6-foot pitch between
rows. Chilled air to cool the expected 20kW/rack is drawn from an opening in the raised
floor beneath the rack by a wall of fans on the left side of the rack. As shown in Figure 2,
thirty 100mm diameter high speed, DC “smart fans” arranged on pluggable fans cards
cool a midplane. Fan speed is monitored and adjusted with feedback from thermal
sensors to maintain constant chip temperature in the face of coherent system-wide power
demands. This reduces the effect of mini-cycles that can cause thermal cycle fatigue of
chip to card connections. If a fan slows or stops, the others increase rotation to maintain
ASIC junction temperature and an error condition is reported to the control host. A
damaged fan card can be replaced with the system running. Fan power is supplied by the
same 208V AC->48V DC N+1 redundant supplies that power the rack electronics. The
48V DC is further regulated to the 1.5V and 2.5V required respectively by the BG/L
ASICs and external DRAMs by either commercially available long-lived converters with
a mean time between failures (MTBF) of more than 2 Million hours, or better, redundant
supplies. Both design points are being considered. The desired MTBF of the system is at
least 10 days.

The system MTBF is calculated below assuming predicted failure rates for ASICs after
burn-in, predicted DRAM hard failure rates, and manufacturer’s suggested average
failure rates for remaining components. Redundant power supplies would further increase
MTBF. We expect to be dominated by DRAM hard failures. The expected DRAM failure
rate is ~5x less than the raw DRAM rate of 25 FITs which accounts for the effects of bit
sparing in the controller. We expect a maintenance policy that tracks software errors and
replaces nodes at service intervals with DRAMs or compute ASICs with EDRAM
showing increased soft errors, to further reduce this number.

System design methodology includes extensive use of parity and ECC to allow for the
detection (and possible correction) for the vast majority of soft error events.

 6

Component FIT per
component*

Components per
64k partition

FITs per
system

Failure rate
per week

ETH complex 160 3024 484k
DRAM 5 608,256 3,041k
Compute + I/O ASIC 20 66,560 1,331k
Link ASIC 25 3072 77k
Clock chip 6.5 ~1200 8k
Non-redundant power supply 500 384 384k
Total (65,536 compute nodes) 5315k 0.89
* After burn-in and applied redundancy. T=60C, V=Nom, 40K POH. FIT = Failures in
parts per million per thousand power-on hours. 1 FIT = 0.168*10-6fails/week if the
machine runs 24 hrs/day.

Table 1: Uncorrectable hard failure Rates of BlueGene/L by major component.

4. Node Overview

The BG/L node ASIC, shown in Figure 3 includes two standard PowerPC 440 processing
cores, each with a PowerPC 440 FP2 core, an enhanced “Double” 64-bit Floating-Point
Unit. The 440 is a standard 32-bit microprocessor core from IBM’s microelectronics
division. This superscalar core is typically used as an embedded processor in many
internal and external customer applications. Since the 440 CPU core does not implement
the necessary hardware to provide SMP support, the two cores are not L1 cache coherent.
A lockbox is provided to allow coherent processor-to-processor communication. Each
core has a small 2 KB L2 cache which is controlled by a data pre-fetch engine, a fast
SRAM array for communication between the two cores, an L3 cache directory and 4 MB
of associated L3 cache made from embedded DRAM, an integrated external DDR
memory controller, a gigabit Ethernet adapter, a JTAG interface as well as all the
network link cut-through buffers and control. The L2 and L3 are coherent between the
two cores.

In normal operating mode, one CPU/FPU pair is used for computation while the other is
used for messaging. However, there are no hardware impediments to fully utilizing the
second processing element for algorithms that have simple message passing requirements
such as those with a large compute to communication ratio.

The PowerPC 440 FP2 core, shown in Figure 4, consists of a primary side and a
secondary side, each of which is essentially a complete floating-point unit. Each side has
its own 64-bit by 32 element register file, a double-precision computational datapath and
a double-precision storage access datapath. A single common interface to the host PPC
440 processor is shared between the sides.

The primary side is capable of executing standard PowerPC floating-point instructions,
and acts as an off-the-shelf PPC 440 FPU [K01]. An enhanced set of instructions include
those that are executed solely on the secondary side, and those that are simultaneously

 7

executed on both sides. While this enhanced set includes SIMD operations, it goes well
beyond the capabilities of traditional SIMD architectures. Here, a single instruction can
initiate a different yet related operation on different data, in each of the two sides. These
operations are performed in lockstep with each other. We have termed these type of
instructions SIMOMD for Single Instruction Multiple Operation Multiple Data. While
Very Long Instruction Word (VLIW) processors can provide similar capability, we are
able to provide it using a short (32 bit) instruction word, avoiding the complexity and
required high bandwidth of long instruction words.

Another advantage over standard SIMD architectures is the ability of either of the sides to
access data from the other side’s register file. While this saves a lot of swapping when
working purely on real data, its greatest value is in how it simplifies and speeds up
complex-arithmetic operations. Complex data pairs can be stored at the same register
address in the two register files with the real portion residing in the primary register file,
and the imaginary portion residing in the secondary register file. Newly defined complex-
arithmetic instructions take advantage of this data organization.

A quadword (i.e., 128 bits) datapath between the PPC 440s Data Cache and the PPC 440
FP2 allows for dual data elements (either double-precision or single precision) to be
loaded or stored each cycle. The load and store instructions allow primary and secondary
data elements to be transposed, speeding up matrix manipulations. While these high
bandwidth, low latency instructions were designed to quickly source or sink data for
floating-point operations, they can also be used by the system as a high speed means of
transferring data between memory locations. This can be especially valuable to the
message processor.

The PowerPC 440 FP2 is a superscalar design supporting the issuance of a computational
type instruction in parallel with a load or store instruction. Since a fused multiply-add
type instruction initiates two operations (i.e., a multiply and an add or subtract) on each
side, four floating-point operations can begin each cycle. To help sustain these
operations, a dual operand memory access can be initiated in parallel each cycle.

The core supports single element load and store instructions such that any element, in
either the primary or secondary register file, can be individually accessed. This feature is
very useful when data structures in code (and hence in memory) do not pair operands as
they are in the register files. Without it, data might have to be reorganized before being
moved into the register files, wasting valuable cycles.

Data are stored internally in double-precision format; any single-precision number is
automatically converted to double-precision format when it is loaded. Likewise, when a
number is stored via a single-precision operation, it is converted from double to single
precision, with the mantissa being truncated as necessary. In the newly defined
instructions, if the double-precision source is too large to be represented as a single-
precision value, the returned value is forced to a properly signed infinity. However, round
to single precision instructions are provided so that an overflowing value can be forced to

 8

infinity or the largest single precision magnitude, based on the rounding mode.
Furthermore, these instructions allow for rounding of the mantissa.

All floating-point calculations are performed internally in double precision and are
rounded in accordance with the mode specified in the PowerPC defined floating-point
status and control register (FPSCR). The newly defined instructions produce the IEEE-
754 specified default results for all exceptions. Additionally, a non-IEEE mode is
provided for when it is acceptable to flush denormalized results to zero. This mode is
enabled via the FPSCR and it saves the need to renormalize denormal results when using
them as inputs to subsequent calculations.

All computational instructions, except for divide and those operating on denormal
operands, execute with a five cycle latency and single cycle throughput. Division is
iterative, producing two quotient bits per cycle. Division iterations cease when a
sufficient number of bits are generated for the target precision, or the remainder is zero,
whichever occurs first. Faster division can be achieved by employing the highly accurate
(i.e., to one part in 213) reciprocal estimate instructions and performing software-
pipelined Newton-Raphson iterations. Similar instructions are also provided for
reciprocal square root estimates with the same degree of accuracy.

Since we extended the instruction set beyond the PowerPC architecture, we are
developing the necessary compiler enhancements. Library routines and ambitious users
can also exploit these enhanced instructions through assembly language, compiler built-in
functions, and advanced compiler optimization flags. The double FPU can also be used to
advantage by the communications processor, since it permits high bandwidth access to
and from the network hardware.

Power is a key issue in such large scale computers, therefore the FPUs and CPUs are
designed for low power consumption. Incorporated techniques range from the use of
transistors with low leakage current, to local clock gating, to the ability to put the FPU or
CPU/FPU pair to sleep. Furthermore, idle computational units are isolated from changing
data so as to avoid unnecessary toggling.

The memory system is being designed for high bandwidth, low latency memory and
cache accesses. An L2 hit returns in 6 to 10 processor cycles, an L3 hit in about 25
cycles, and an L3 miss in about 75 cycles. L3 misses are serviced by external memory,
the system in design has a 16 byte interface to nine 256Mb SDRAM-DDR devices
operating at a speed of one half or one third of the processor. While peak memory
bandwidths, as indicated in Figure 2 are high, sustained bandwidths will be lower for
certain access patterns, such as a sequence of loads, since the 440 core only permits three
outstanding loads at a time.

The high level of integration of the BlueGene/L system-on-a-chip approach allows for
latencies and bandwidths that are significantly better than those for nodes typically used
in ASCI scale supercomputers.

 9

5. Torus Network

The torus network is used for general-purpose, point-to-point message passing and
multicast operations to a selected “class” of nodes. The topology is a three-dimensional
torus constructed with point-to-point, serial links between routers embedded within the
BlueGene/L ASICs. Therefore, each ASIC has six nearest-neighbor connections, some of
which may traverse relatively long cables. The target hardware bandwidth for each torus
link is 175MB/sec in each direction. Torus networks have been implemented in other
machines such as the Cray T3E [ST96].

The general structure of the torus within each node is shown in Figure 5. Packets are
injected into the network at one of the Local Injection FIFOs, and are deposited into a
Local Reception FIFO upon reaching their destinations. The messaging coprocessor is
responsible for injecting and removing packets to and from these FIFOs. Packets that
arrive from another node are immediately forwarded in the absence of contention, or
stored in a waiting FIFO in the corresponding input unit until the contention clears.
Arbitration is highly pipelined and distributed (each input and output unit has its own
arbiter), as is common in such switches, e.g., [DDHKX94]. Using a link-level CRC and a
HIPPI-like retransmission protocol, the network will reliably deliver a single copy of
every packet injected.

The torus network provides both adaptive and deterministic minimal-path routing, and is
deadlock free. Throughput and hardware latency are optimized through the use of virtual
cut-through (VCT) routing [KK79]. Messages can be composed of multiple packets,
which are the atomic unit of routing. Therefore, adaptively routed packets from the same
message can arrive out of order. Packets are variable in size, ranging from 32 bytes to
256 bytes with a granularity of 32 bytes.

Virtual channels (VCs) are used to provide deadlock-free adaptive routing and increase
throughput [DS87, D92, D93]. We have developed a near cycle accurate simulator of the
torus network that has been used for the detailed design of the network. Based on
performance studies and a sizing of the hardware requirements, the network will have
four VCs. Two VCs will be devoted to adaptive routing, and two will be devoted to
deterministic routing. One of the deterministic VCs is used as a "bubble escape channel"
[PGPBDI99] for the adaptive sub-network in order to guarantee deadlock freedom, and
the other is reserved for high-priority packets. Because it is expected that most traffic will
be adaptively routed, two adaptive VCs are provided in order to reduce head-of-line
blocking and allow for the use of simple FIFO buffers within the routers. Flow control
between routers is provided through the use of tokens. There is sufficient buffer space to
maintain full link hardware bandwidth in the absence of contention.

A more detailed description of the network and the network simulator will be given
elsewhere, however we now give a short example of its use. One of the most
communications intensive operations in scientific computing is the MPI_Alltoall
collective communications call in which every processor sends a different message to
every other processor. We simulated a representative portion of this call on a 32K node

 10

machine and the results are displayed in Table 2. The table illustrates the advantage of
dynamic routing over static routing and shows that, because of the highly pipelined
nature of the network, the links can be kept busy essentially all the time with only 2
dynamic VCs. For full sized packets, we expect a 12% overhead due to the hardware
packet header and trailer, the software packet header, and the token protocol; this
accounts for the difference between the total link utilization and the payload link
utilization.

 Average Link
Utilization (Total)

Average Link
Utilization (Payload Only)

Static Routing 76% 66%
1 Dynamic VC 95% 83%
2 Dynamic VCs 99% 87%

Table 2: Estimated link utilizations during the middle of an MPI_Alltoall operation on a 32K node
BG/L. In all three cases, the total FIFO sizes are fixed and equal to 3 KB per link. There is no high

priority traffic in this exchange.

6. Signaling

The BG/L torus interconnect, and the BG/L tree described below, rely on serial
communication. A common system wide clock at the frequency of the processor is used
to provide a reference for sending and receiving data. Data are driven on both clock edges
from a differential, two bit pre-compensating driver designed to overcome the ~10
decibel of loss on the 8 meter differential cables and connectors. Data are captured by
over-sampling using a string of time delayed latches, the location of the data bit is
computed by a background state machine that monitors false transitions and tracks
changes in arrival or sampling times. To reduce power and allow for minimum silicon
delay, a variable delay line after the driver is auto-configured at power-on to optimize the
location of the sampled datum in the instrumented delay line. Features such as byte
serial/deserializing, parity and CRC generation and checking, message retry, and
checksums for error localization are all provided by the hardware.

7. Global Trees

Message passing on the global combining tree is done through the use of a packet
structure similar to that of the torus network. The tree network is a token-based network
with two VCs. Packets are non-blocking across VCs. Setting programmable control
registers flexibly controls the operation of the tree. In its simplest form, packets going up
towards the root of the tree can be either point-to-point or combining. Point-to-point
packets are used, for example, when a compute node needs to communicate with its I/O
node. The combining packets are used to support MPI collective operations, such as
MPI_Allreduce, across all the nodes connected to the tree (e.g., on
MPI_COMM_WORLD). All packets coming down the tree are broadcast further down

 11

the tree according to the control registers and received upon reaching their destination.
For collective operations, the packet is received at each node. The tree has a target
hardware bandwidth of 350 MB/sec and a target one-way hardware latency of about 1.5
microseconds on a 64K node partition.

The tree module, shown in Figure 6, is equipped with an integer ALU for combining
incoming packets and forwarding the resulting packet. Packets can be combined using
bit-wise operations such as XOR or integer operations such as ADD/MAX for a variety
of data widths. To do a floating-point sum reduction on the tree requires potentially two
round trips on the tree. In the first trip each processor submits the exponents for a max
reduction. In the second trip, the mantissas are appropriately shifted to correspond to the
common exponent as computed on the first trip and then fed into the tree for an integer
sum reduction. Alternatively, double precision floating-point operations can be
performed by converting the floating-point numbers to their 2048-bit integer
representations, thus requiring only a single pass through the tree network.

A separate set of wires based on asynchronous logic form another tree that enables fast
signaling of global interrupts and barriers (global AND or OR). The target latency to
perform a global barrier over this network for a 64K node partition is approximately 1.5
microseconds.

8. Software Support

Scalable system software that supports efficient execution of parallel applications is an
integral part of the BlueGene/L architecture. A BlueGene/L application is organized as a
collection of compute processes, each executing on its own compute node from a
partition of the system. I/O nodes provide additional services for the executing
application. In this section, we describe the software services provided by compute and
I/O nodes for the execution of applications. We also discuss the programming models we
are investigating for BlueGene/L, other components of the system software, and certain
autonomic features of the machine that we are developing.

8.1 Operating System Architecture

Our goal in developing the system software for BG/L has been to create an environment
which looks familiar and also delivers high levels of application performance. The
applications get a feel of executing in a Unix-like environment.

The approach we have adopted is to split the operating system functionality between
compute and I/O nodes. Each compute node is dedicated to the execution of a single
application process. The I/O node provides the physical interface to the file system. The
I/O nodes are also available to run processes which facilitate the control, bring-up, job
launch and debug of the full BlueGene/L machine. This approach allows the compute
node software to be kept very simple.

 12

The compute node operating system, also called the BlueGene/L compute node kernel, is
a simple, lightweight, single-user operating system that supports execution of a single
dual-threaded application compute process. Each thread of the compute process is bound
to one of the processors in the compute node. The compute node kernel is complemented
by a user-level runtime library that provides the compute process with direct access to the
torus and tree networks. Together, kernel and runtime library implement compute node-
to-compute node communication through the torus and compute node-to-I/O node
communication through the tree. The compute node-to-compute node communication is
intended for exchange of data by the application. Compute node-to-I/O node
communication is used primarily for extending the compute process into an I/O node, so
that it can perform services available only in that node.

The lightweight kernel approach for the compute node was motivated by the Puma and
Cougar kernels at Sandia National Laboratory and the University of New Mexico. The
BG/L compute kernel provides a single and static virtual address space to one running
compute process. Because of its single-process nature, the BG/L compute kernel does not
need to implement any context switching. It does not support demand paging and exploits
large pages to ensure complete TLB coverage for the application’s address space. This
approach results in the application process receiving full resource utilization.

I/O nodes are expected to run the Linux operating system, supporting the execution of
multiple processes. Only system software executes on the I/O nodes, no application code.
The purpose of the I/O nodes during application execution is to complement the compute
node partition with services that are not provided by the compute node software. I/O
nodes provide an actual file system to the running applications. They also provide socket
connections to processes in other systems. When a compute process in a compute node
performs an I/O operation (on a file or a socket), that I/O operation (e.g., a read or a
write) is shipped through the tree network to a service process in the I/O node. That
service process then issues the operation against the I/O node operating system. The
results of the operation (e.g., return code in case of a write, actual data in case of a read)
are shipped back to the originating compute node. The I/O node also performs process
authentication, accounting, and authorization on behalf of its compute nodes.

I/O nodes also provide debugging capability for user applications. Debuggers running on
an I/O node can debug application processes running on compute nodes. In this case, the
shipping occurs in the opposite direction. Debugging operations performed on the I/O
node are shipped to the compute node for execution against a compute process. Results
are shipped back to the debugger in the I/O node.

8.2 Programming Models

Message passing is expected to be the dominant parallel programming model for BG/L
applications. It is supported through an implementation of the MPI message-passing
library. In developing MPI for BG/L, we are paying particular attention to the issue of

 13

efficient mapping of operations to the torus and tree networks. Also important is the
issue of efficient use of the second (communication) processor in a compute node. We
are also investigating two approaches to the global address space programming model for
BG/L: Co-arrays [NuRe98] and Unified Parallel C (UPC) [CDCYBW99].

8.3 Control System

The BG/L system software includes a set of control services that execute on the host
system. Many of these services, including system bring up, machine partitioning,
measuring system performance, and monitoring system health, are nonarchitected from a
user perspective, and are performed through the backdoor JTAG network described in
Section 2 (which is also nonarchitected from a user perspective).

The resource management system of BG/L provides services to create electrically
isolated partitions of the machine and to allocate resources to jobs. Each partition is
dedicated to the execution of a single job at a time. Job scheduling and job control is also
performed from the host.

8.4 Autonomic Features

Given the scale of BG/L, there is clearly a need to recover from failures of individual
components. Support for long-running applications will be provided through a
checkpoint/restart mechanism. We are currently developing an application-assisted
checkpoint infrastructure. In this approach, the application programmer is responsible for
identifying points in the application in which there are no outstanding messages. The
programmer can then place calls to a system checkpoint in those points. When executed,
the checkpoint service will synchronize all tasks of the application and take a complete
application checkpoint, writing the state of all compute processes to disk. Application
state that resides on I/O nodes, particularly file pointers and list of open files, is also
saved to disk. In case of unexpected termination, the application can then be restarted
from its latest checkpoint.

In addition to being able to reconfigure the machine on a midplane boundary, we have
flexibility in the routing hardware to allow for deadlock free routing in the presence of a
limited number of isolated faulty nodes. This is accomplished through software by setting
the routing parameters on a packet such that the faulty node or link is guaranteed to be
avoided. There will be some impact on the network performance for this model.
Additionally, this run model will not allow for some of the other hardware features such
as hardware row multicast to operate as the faulty node may be in the row in which the
multicast is occurring. The design of the compute node that contains the network routing
logic is such that the node can still operate from the network point of view even if there is
a hard fault in the remaining compute portions of the node.

 14

9. Validating the architecture with application programs

A wide variety of scientific applications, including many from DOE’s NNSA
laboratories, have been used to assist in the design of BlueGene/L’s hardware and
software. BlueGene/L’s unique features are especially appealing for ASCI-scale
scientific applications. The global barrier and combining trees will vastly improve the
scalability and performance of widely-used collective operations, such as MPI_Barrier
and MPI_Allreduce. Our analysis shows that a large majority of scientific applications
such as SPPM (simplified piecewise-parabolic method), Sweep3D (discrete ordinates
neutron transport using wavefronts), SMG2000 (semicoarsening multigrid solver),
SPHOT (Monte Carlo photon transport), SAMRAI (Structured Adaptive Mesh
Refinement Application Infrastructure) and UMT2K (3D deterministic multigroup,
photon transport code for unstructured meshes) use these collective operations to
calculate the size of simulation timesteps and validate physical conservation properties of
the simulated system. (These programs are described at
www.llnl.gov/asci/purple/benchmarks/ and www.llnl.gov/CASC/SAMRAI.) Most
applications use MPI's nonblocking point-to-point messaging operations to allow
concurrency between computation and communication; BG/L's distinct communication
and computation processors will allow the computation processor to transfer overhead for
messaging to the communication processor. In addition, we have identified several
important applications whose high flops/loads ratio and alternating
compute/communicate behavior will allow effective use of the second floating-point unit
in each node. We are continuing to study application performance through tracing and
simulation analysis, and will analyze the actual hardware as it becomes available. The
results of analysis performed with collaborators at the San Diego Supercomputer Center
and Cal Tech’s Center for Advanced Computing Research will be reported elsewhere.

10. BlueGene science applications development

To carry out the scientific research into the mechanisms behind protein folding
announced in December 1999, development of a molecular simulation application kernel
targeted for massively parallel architectures is underway. For additional information
about the science application portion of the BlueGene project, see [A01]. This application
development effort serves multiple purposes: (1) It is the application platform for the
Blue Gene Science program. (2) It serves as a prototyping platform for research into
application frameworks suitable for cellular architectures. (3) It provides an application
perspective in close contact with the hardware and systems software development teams.

One of the motivations for the use of massive computational power in the study of
protein folding and dynamics is to obtain a microscopic view of the thermodynamics and
kinetics of the folding process. Being able to simulate longer and longer time-scales is
the key challenge. Thus the focus for application scalability is on improving the speed of
execution for a fixed size system by utilizing additional CPUs. Efficient domain
decomposition and utilization of the high performance interconnect networks on BG/L
(both torus and tree) are the keys to maximizing application scalability.

 15

To provide an environment to allow exploration of algorithmic alternatives, the
applications group has focused on understanding the logical limits to concurrency within
the application, structuring the application architecture to support the finest grained
concurrency possible, and to logically separate parallel communications from straight-
line serial computation. With this separation and the identification of key
communications patterns used widely in molecular simulation, it is possible for domain
experts in molecular simulation to modify detailed behavior of the application without
having to deal with the complexity of the parallel communications environment as well.

Key computational kernels derived from the molecular simulation application have been
used to characterize and drive improvements in the floating point code generation of the
compiler being developed for the BG/L platform. As additional tools and actual
hardware become available, the effects of cache hierarchy and communications
architecture can be explored in detail for the application.

11. References

A01: F. Allen et al., Blue Gene: A vision for protein science using a petaflop
supercomputer, IBM Systems Journal, Volume 40, Number 2, 2001, p. 310
(http://www.research.ibm.com/journal/sj/402/allen.html)

CDCYBW99: W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and K. Warren.
“Introduction to UPC and Language Specification.” IDA Center for Computing Sciences
Technical Report CCS-TR-99-157, 1999.

D92: Dally, W.J. (1992). Virtual-Channel Flow Control. IEEE Transactions on Parallel
and Distributed Systems 3, No. 2, 194-205.

DDHKX94: Dally, W.J., Dennison, L.R., Harris, D., Kan, K., and Xanthoppulos, T.
“Architecture and Implementation of the Reliable Router,” In Proceedings of HOT
Interconnects II, pp. 122-133, Aug. 1994.

DS87: Dally, W.J. and Seitz, C. “Deadlock-Free Message Routing in Multiprocessor
Interconnection Networks,” IEEE Transactions on Computers, pp. 547-553, May 1987.

D01: K. Dockser. “Honey, I Shrunk the Supercomputer” - The PowerPC TM 440 FPU
brings supercomputing to IBM’s Blue Logic TM library. MicroNews, 7(4):29–31,
November 2001. IBM Microelectronics.

D93: Duato, J. “A New Theory of Deadlock-Free Adaptive Routing in Wormhole
Networks,” IEEE Transactions on Parallel and Distributed Systems, Vol. 4, No. 12, pp.
1320-1331, Dec. 1993.

 16

ISSCC02: Almasi et al. “Cellular Supercomputing with System-On-A-Chip.” In
Proceedings of the 2002 IEEE International Solid-State Circuits Conference.

KK79: Kermani, P. and Kleinrock, L. “Virtual Cut-Through: A New Computer
Communication Switching Technique,” Computer Networks, Vol. 3, pp. 267-286, 1979.

NuRe98: R. W. Numrich and J. K. Reid. “Co-Array Fortran for parallel programming.”
Rutherford Appleton Laboratory Technical Report RAL-TR-1998-060, 1998.

PGPBDI99: Puente, V., Gregorio, J.A., Prellezo, J.M., Beivide, R., Duato, J., and Izu, C.
“Adaptive Bubble Router: A Design to Balance Latency and Throughput in Networks for
Parallel Computers,” In Proceedings of the 22nd International Conference on Parallel
Processing, ICPP ‘99, Sept. 1999.

ST96: Scott, S.L. and Thorson, G.M. “The Cray T3E Network: Adaptive Routing in a
High Performance 3D Torus,” In Proceedings of HOT Interconnects IV, Aug. 1996.

QCDOC: A 10-TERAFLOPS SCALE COMPUTER FOR LATTICE QCD. Nucl. Phys.
Proc. Suppl. 94: 825-832, 2001.

 17

2.8/5.6 GF/s
4 MB

Chip
(2 processors)

Node Board
(32 chips, 4x4x2)

16 Compute Cards

Cabinet
(32 Node boards,

8x8x16)

90/180 GF/s
8 GB DDR

2.9/5.7 TF/s
256 GB DDR

System
(64 cabinets, 64x32x32)

180/360 TF/s
16 TB DDR

440 core

440 core

EDRAM

I/O

Compute Card
(2 chips,
1x2x1)

5.6/11.2 GF/s
0.5 GB DDR

Figure 1: BlueGene/L packaging.

 18

Fan Rail

Fan-Card

Metral 5-Row Power Header
(10 Blades; fan card requires 9)

Figure 2: BlueGene/L midplane package.

 19

PLB (4:1)

“Double FPU”

Ethernet
Gbit

JTAG
Access

144 bit wide
DDR
256MB

JTAG

Gbit
Ethernet

440 CPU

440 CPU
I/O proc

Prefetch
Buffers

Prefetch
Buffers

Multiported
SRAM
Buffer

Link buffers
and
Routing

DDR
Control
with ECC

Shared
L3 directory
for EDRAM

Includes ECC

4MB
EDRAM

L3 Cache

Multibank

l

6 outgoing and 6
incoming torus links at
1.4 Gb/s link
+ 2.8 Gb/s tree

256

256

1024+
144 ECC256

128

128

32k/32k L1

32k/32k L1

2.7GB/s

22GB/s

15-way fully-associative
prefetching caches

11GB/s

“Double FPU”

5.5GB/s

5.5 GB/s

256

128

Figure 3: BlueGene/L node diagram. The bandwidths listed are targets.

 20

Figure 4: Double FPU architecture.

 21

Figure 5: Basic architecture of the torus router.

2

2

2

7

Input

Output
Link +X

Input

Output
Link -X

Input

Output
Link +Y

Input

Output
Link -Y

Input

Output
Link +Z

Input

Output
Link -Z

 Global
 Crossbar
 (19x6,
 Byte-wide)

Local Reception

Local Injection

2

2

2

 2
(each)

 2
(each)

 22

128 bit R/W

128 bit R/WALU

R
ec
ei
ve
r

Se
nd
er

R
ec
ei
ve
r

Se
nd
er

R
ec
ei
ve
r

Se
nd
er

Injection

Reception

PROCESSOR
INTERFACE

5x4
CROSSBAR

TREE MODULE

DCR-PORT,
DEBUG-PORT

CRNI
(Class Routed

Network Module)

16 bit to and from Capture Logic

16 bit to and from Capture Logic

CORE 0

CORE 1

TREE
NODE

Figure 6: Basic architecture of the tree router.

